

Introduction

learning of OCC-Model

SelFlow: Self-Supervised Learning of Optical Flow

¹Pengpeng Liu, ¹Michael R. Lyu, ¹Irwin King, ^{2,3}Jia Xu ¹The Chinese University of Hong Kong ²Tencent AI Lab ³Huya Inc.

CNNs. Here we build our network architecture based on PWC-Net.

	Method	Sintel	Sintel 1		
	Method	train	test	train	
	BackToBasic+ft [20]	_	_	_	
Unsupervised	DSTFlow+ft 37	(6.16)	10.41	(6.81)	
	UnFlow-CSS [29]	_	_	(7.91)	
	OccAwareFlow+ft [46]	(4.03)	7.95	(5.95)	
	MultiFrameOccFlow-None+ft [18]	(6.05)	_	(7.09)	
	MultiFrameOccFlow-Soft+ft [18]	(3.89)	7.23	(5.52)	
	DDFlow+ft [26]	(2.92)	6.18	3.98	
	Ours	(2.88)	6.56	(3.87)	
Supervised	FlowNetS+ft [10]	(3.66)	6.96	(4.44)	
	FlowNetC+ft [10]	(3.78)	6.85	(5.28)	
	SpyNet+ft 35	(3.17)	6.64	(4.32)	
	FlowFieldsCNN+ft [2]	_	3.78	_	
	DCFlow+ft [49]	_	3.54	_	
	FlowNet2+ft [15]	(1.45)	4.16	(2.01)	
	UnFlow-CSS+ft [29]	_	_	_	
	LiteFlowNet+ft-CVPR [14]	(1.64)	4.86	(2.23)	
	LiteFlowNet+ft-axXiv [14]	(1.35)	4.54	(1.78)	
	PWC-Net+ft-CVPR [43]	(2.02)	4.39	(2.08)	
	PWC-Net+ft-axXiv [42]	(1.71)	3.45	(2.34)	
	ProFlow+ft [27]	(1.78)	2.82	_	
	ContinualFlow+ft [31]	_	3.34	_	
	MFF+ft [36]	_	3.42	_	
	Ours+ft	(1.68)	3.74	(1.77)	

Loss Functions

$$\int_{0}^{\infty} = \sum_{i,j} \frac{\sum \psi(I_i - I_{j \to i}^w) \odot (1 - O_i)}{\sum (1 - O_i)}$$

- > Self-Supervision Mask $M_{i \rightarrow i}$: $M_{i \to j} = \operatorname{clip}(\tilde{O}_{i \to j} - O_{i \to j}, 0, 1)$ > Self-Supervision loss L_o : $\sum \psi(\mathbf{w}_{i \to j} - \widetilde{\mathbf{w}}_{i \to j}) \odot M_{i \to j}$ $L_o =$ $\sum M_{i \to j}$
- Unsupervised Training **NOC-Model:** L_p
- OCC-Model: $L_p + L_o$
- Supervised Fine-tuning
- Initialize with pre-trained OCC-Model, fine-tune with ground truth optical flow

KITTI 2012 KITTI 2015 test(Fl) train 39% 23.30% 8.10 31.2% 22.94% 6 59 5.72 14.29% 14.19% 7.68% 4.84 2.2 35.079 18.68 % 14.83% 11.48% (2.3)8.8%11.11%(1.86)10.24% (2.16)9.38% (1.62)9.60% (2.16)8.10% 7.90%(1.45)(5.22) 15.04% 7.88% 10.03% 7.17% 7.87%**1.5 6.19%** (1.18) 8.42% 4.26

Sinter Benchmark											
	EPE all	EPE matched	EPE unmatched	d0-10 d10-60		d60-140	s0-10	s10-40	s40+		
GroundTruth ^[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
SelFlow ^[2]	4.262	2.040	22.369	4.083	1.715	1.287	0.582	2.343	27.154		
VCN ^[3]	4.520	2.195	23.478	4.423	1.802	1.357	0.934	2.816	26.434		
ContinualFlow_ROB [4]	4.528	2.723	19.248	5.050	2.573	1.713	0.872	3.114	26.063		
MFF ^[5]	4.566	2.216	23.732	4.664	2.017	1.222	0.893	2.902	26.810		
IRR-PWC ^[6]	4.579	2.154	24.355	4.165	1.843	1.292	0.709	2.423	28.998		
PWC-Net+ ^[7]	4.596	2.254	23.696	4.781	2.045	1.234	0.945	2.978	26.620		

Occlusion	Multiple	Self-Supervision	Self-Supervision	Sintel Clean		Sintel Final		KITTI 2012			KITTI 2015				
Handling	Frame	Rectangle	Superpixe1	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC
×	×	×	×	(3.85)	(1.53)	(33.48)	(5.28)	(2.81)	(36.83)	7.05	1.31	45.03	13.51	3.71	75.51
×	✓	×	×	(3.67)	(1.54)	(30.80)	(4.98)	(2.68)	(34.42)	6.52	1.11	42.44	12.13	3.47	66.91
1	×	×	×	(3.35)	(1.37)	(28.70)	(4.50)	(2.37)	(31.81)	4.96	0.99	31.29	8.99	3.20	45.68
1	✓	×	×	(3.20)	(1.35)	(26.63)	(4.33)	(2.32)	(29.80)	3.32	0.94	19.11	7.66	2.47	40.99
1	×	×	1	(2.96)	(1.33)	(23.78)	(4.06)	(2.25)	(27.19)	1.97	0.92	8.96	5.85	2.96	24.17
1	✓	✓	×	(2.91)	(1.37)	(22.58)	(3.99)	(2.27)	(26.01)	1.78	0.96	7.47	5.01	2.55	21.86
1	✓	×	1	(2.88)	(1.30)	(22.06)	(3.87)	(2.24)	(25.42)	1.69	0.91	6.95	4.84	2.40	19.68
								•							

Reference Image

- occluded pixels
- of pre-training on synthetic labeled datasets

后牙自猎 HUUa.com

Cintal Danahmarl

Ablation Study

Effect of Self-Supervision

Flow Without Self-Supervision

Flow With Self-Supervision

Conclusion

> We present a self-supervised approach to learning accurate optical flow for both occluded and non-

 \succ Our self-supervised pre-training reduces the reliance > Our method achieves state-of-the-art results on KITTI and Sintel benchmarks (currently No.1 on Sintel)

