

DDFlow: Learning Optical Flow with Unlabeled Data Distillation

Pengpeng Liu¹, Irwin King¹, Michael Lyu¹, Jia Xu² ¹The Chinese University of Hong Kong² Tencent AI Lab

Introduction

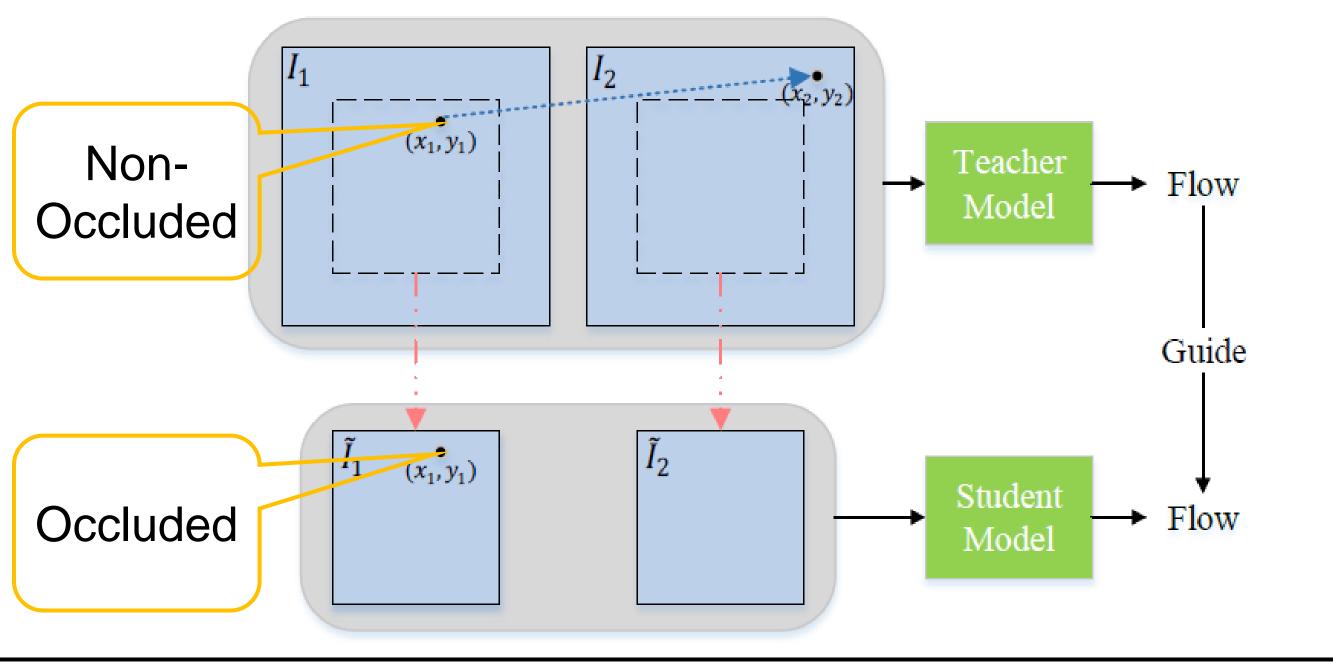
Optical Flow: motion of pixels between two images

Challenges

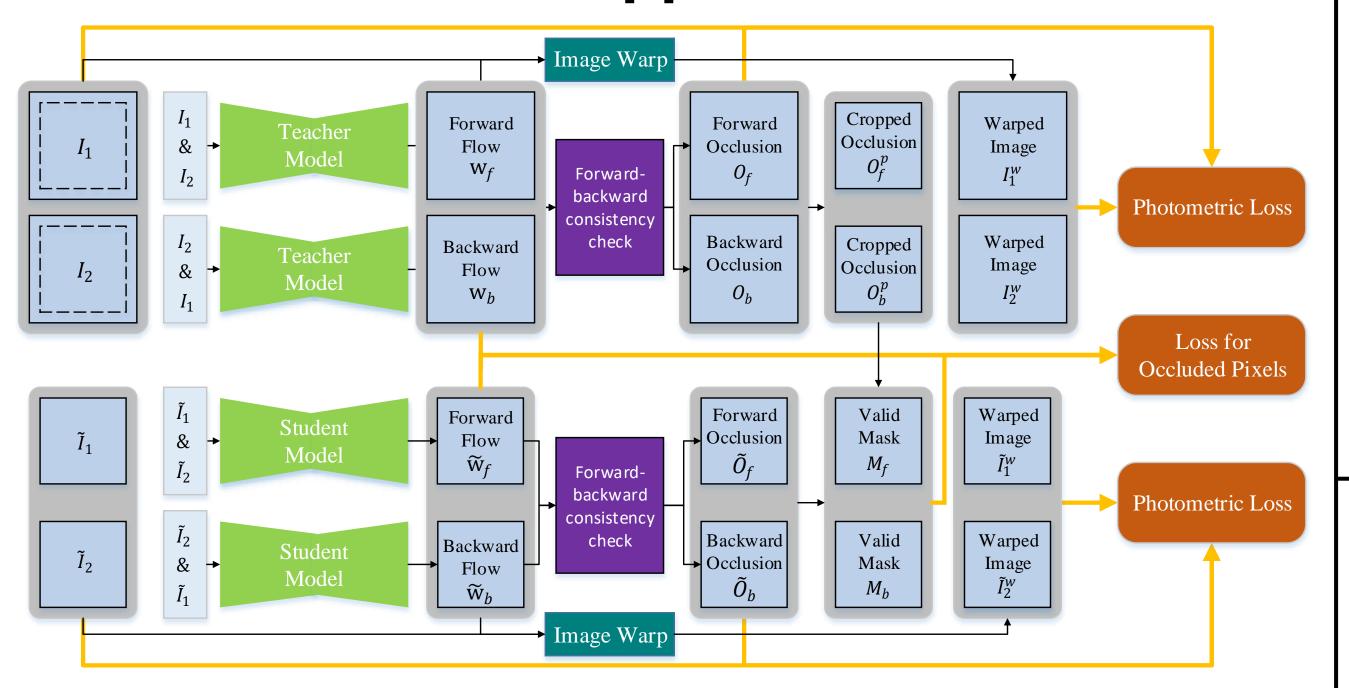
- Traditional methods: time costing, complex
- CNNs: need a large amount of labeled data, difficult to obtain
- Pre-train on synthetic dataset → domain gap
- Unsupervised Learning
 - Photometric loss: measure the difference between reference image and warped target image
 - Detect occlusion and exclude occluded pixels
 - Produce reliable optical flow for non-occluded pixels, but lack the ability to learn the flow of occluded pixels
- How to fully utilize those reliable non-occluded predictions?

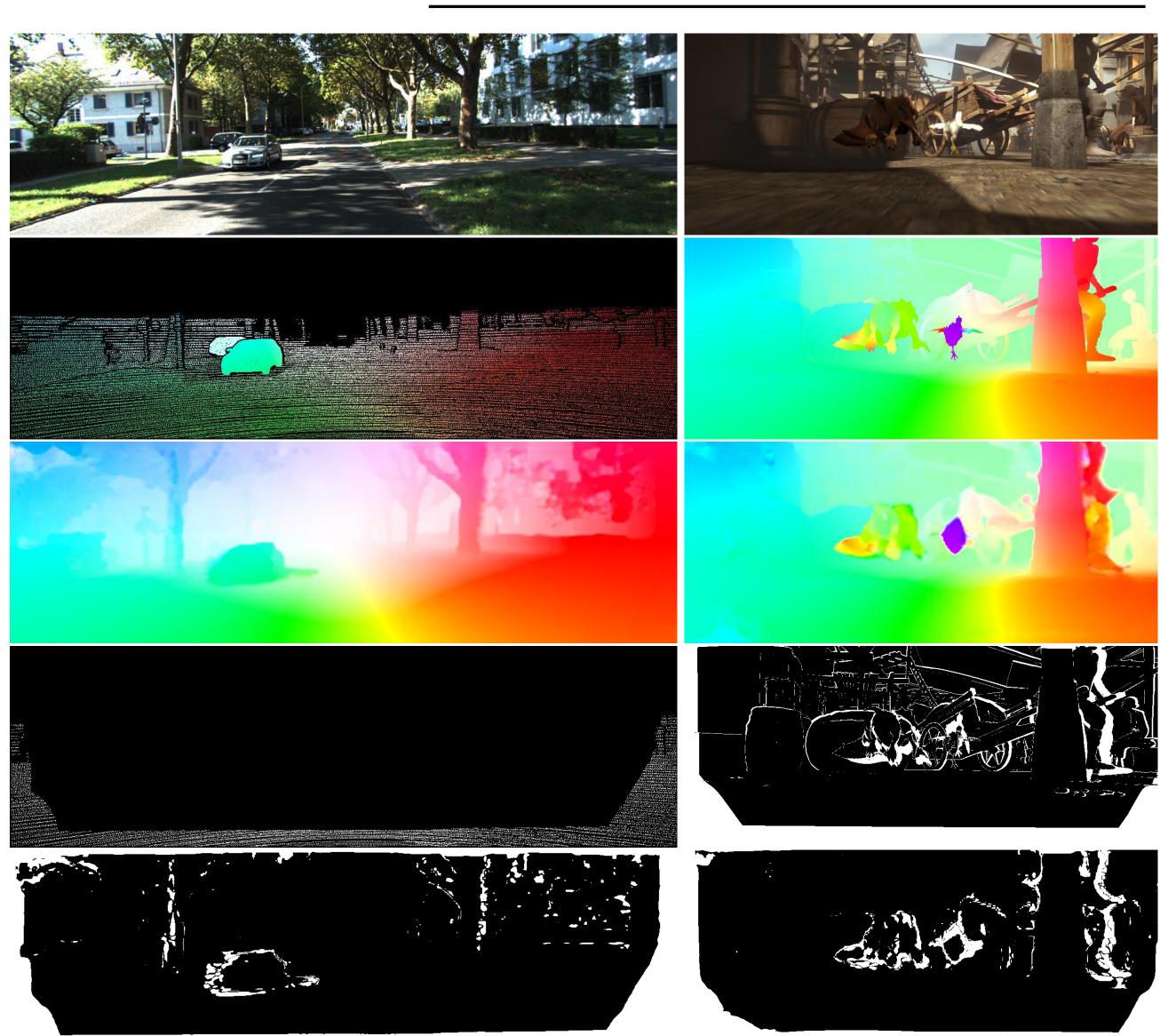
	Method	Chairs Sintel Clean		Sintel	Sintel Final		KITTI 2012			KITTI 2015	
	memou	test	train	test	train	test	train	test	Fl-noc	train	Fl-all
Supervise	FlowNetS (Dosovitskiy et al. 2015)	2.71	4.50	7.42	5.45	8.43	8.26	_	_	_	_
	FlowNetS+ft (Dosovitskiy et al. 2015)	_	(3.66)	6.96	(4.44)	7.76	7.52	9.1	_	_	_
	SpyNet (Ranjan and Black 2017)	2.63	4.12	6.69	5.57	8.43	9.12	_	_	_	_
	SpyNet+ft (Ranjan and Black 2017)	_	(3.17)	6.64	(4.32)	8.36	8.25	10.1	12.31%	_	35.07%
	FlowNet2 (Ilg et al. 2017)	_	2.02	3.96	3.14	6.02	4.09	_	_	10.06	_
	FlowNet2+ft (Ilg et al. 2017)	_	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	4.82%	(2.3)	11.48%
	PWC-Net (Sun et al. 2018)	2.00	3.33	_	4.59	_	4.57	_	_	13.20	_
	PWC-Net+ft (Sun et al. 2018)	_	(1.70)	3.86	(2.21)	5.13	(1.45)	1.7	4.22%	(2.16)	9.60%
Unsupervise	BackToBasic+ft (Jason, Harley, and Derpanis 2016)	5.3	_	_	_	_	11.3	9.9	_	_	_
	DSTFlow+ft (Ren et al. 2017)	5.11	(6.16)	10.41	(6.81)	11.27	10.43	12.4	_	16.79	39%
	UnFlow-CSS+ft (Meister, Hur, and Roth 2018)	_	_	_	(7.91)	10.22	3.29	_	_	8.10	23.30%
	OccAwareFlow (Wang et al. 2018)	3.30	5.23	8.02	6.34	9.08	12.95	_	-	21.30	_
	OccAwareFlow+ft-Sintel (Wang et al. 2018)	3.76	(4.03)	7.95	(5.95)	9.15	12.9	_	_	22.6	_
	OccAwareFlow-KITTI (Wang et al. 2018)	-	7.41	_	7.92	_	3.55	4.2	_	8.88	31.2%
	MultiFrameOccFlow-Hard+ft (Janai et al. 2018)	_	(6.05)	_	(7.09)	_	_			6.65	_
	MultiFrameOccFlow-Soft+ft (Janai et al. 2018)	_	(3.89)	7.23	(5.52)	8.81	_			6.59	22.94%
	DDFlow	2.97	3.83	—	4.85	—	8.27	_	—	17.26	_
	DDFlow+ft-Sintel	3.46	(2.92)	6.18	(3.98)	7.40	5.14	_	_	12.69	—
	DDFlow+ft-KITTI	6.35	6.20	_	7.08	_	2.35	3.0	4.57%	5.72	14.29%
								Sint	al V	ITTI	KITTI
						Sintel					
		Method					Clean	Fin	al 2	012	2015
	F-score for –	MODO	F				_	0.4	8	_	_
\cap	olucion Ectimation	OccAwa	v-ft		(0.54)	(0.4	8) 0.	.95*	0.88^{*}	
			v-Soft-		0.49)	(0.4		_	0.91*		
MultiFrameOccFlow-Soft+ft								(U.T	1)	~	

(0.59)


(0.52)

0.94*


 0.86^{*}


Ours

Experiment

Our Approach

- \succ L_o only functions on pixels that are non-occluded in original images but occluded in cropped patches
- Occlusion estimation: forward-backward consistency check

 $\begin{cases} |\mathbf{w}_f + \hat{\mathbf{w}}_f|^2 < \alpha_1(|\mathbf{w}_f|^2 + |\hat{\mathbf{w}}_f|^2) + \alpha_2, \\ \mathbf{p} + \mathbf{w}_f(\mathbf{p}) \in \Omega, \end{cases}$

Photometric loss

$$\begin{split} L_p &= \sum \psi(I_1 - I_2^w) \odot (1 - O_f) / \sum (1 - O_f) \\ &+ \sum \psi(I_2 - I_1^w) \odot (1 - O_b) / \sum (1 - O_b) \end{split}$$

- Loss for occluded pixels
 - $M_f = \operatorname{clip}(\widetilde{O}_f O_f^p, 0, 1)$
 - $$\begin{split} L_o &= \sum \psi(\mathbf{w}_f^p \widetilde{\mathbf{w}}_f) \odot M_f / \sum M_f \\ &+ \sum \psi(\mathbf{w}_b^p \widetilde{\mathbf{w}}_b) \odot M_b / \sum M_b \end{split}$$
- Example intermediate results

Ablation Study

Occlusion	Census	Data	Chairs	Sintel Clean			Sintel Final			KITTI 2012			KITTI 2015					
Handling	Transform	Distillation	ALL	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC			
×	×	×	4.06	(5.05)	(2.45)	(38.09)	(7.54)	(4.81)	(42.46)	10.76	3.35	59.86	16.85	6.45	82.64			
~	×	×	3.95	(4.45)	(2.16)	(33.48)	(6.56)	(4.12)	(37.83)	6.67	1.94	38.01	12.42	5.67	60.59			
		Ŷ	3.75 3.24	(3.90) (3.37)	(1.60) (1.34)	(33.31) (29.36)	(5.23) (4.47)	(2.80) (2.32)	(36.35) (31.86)	8.66 4.50	1.47 1.10	56.24 27.04	14.04 8.01	4.06 3.02	77.16 42.66			
~	1	5	2.97	(2.92)	(1.27)	(23.92)	(3.98)	(2.32) (2.21)	(26.74)	2.35	1.02	11.31	5.72	2.73	24.68			
Reference Image					Flow without Data Distillation						Flow with Data Distillation							

Summary

- Propose a data distillation approach to learn optical flow from unlabeled data and can predict the optical flow of occluded pixels
- Achieve the highest accuracy among all prior unsupervised methods on all challenging optical flow benchmarks including Flying Chairs, KITTI 2012, KITTI

2015 and Sintel

Code and models available on

https://github.com/ppliuboy/DDFlow

